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Abstract: Water mains are indispensable infrastructures in many countries around the world. Several factors may be responsible for the
failure of these essential pipelines that negatively impact their integrity and service life. The purpose of this study is to propose models that
can predict the average time to failure of water mains by using intelligent approaches, including artificial neural network (ANN), ridge
regression (l2), and ensemble decision tree (EDT) models. The developed models were trained by using collected data from Quebec City
water mains, including records of the possible factors, such as the materials, length, and diameter of pipes, that contributed to the failure.
The ensemble learning model was applied by using a boosting technique to improve the performance of the decision tree model. All models,
however, were able to predict reasonably the failure of water mains. A global sensitivity analysis (GSA) was then conducted to test the
robustness of the model and to show clearly the relationship between the input and output of the model. The GSA results show that gray
cast iron (CI), hyprescon/concrete (Hy), and ductile iron with lining (DIL) are the most vulnerable materials for the model output. The results
also indicate that the failure of water mains mostly depends on pipe material and length. It is hoped that this study will help decision makers to
avoid unexpected water main failure. DOI: 10.1061/(ASCE)PS.1949-1204.0000485. © 2020 American Society of Civil Engineers.
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Introduction

Water mains are crucial infrastructures to cities around the world,
and their failure can lead to significant economic, environmental,
and social losses (Ana and Bauwens 2010). Water mains are ex-
pected to have a service life of between 50 and 100 years (Li et al.
2013; Ormsby 2009). More than 300 breaks of large water utilities
could occur in a year that could require urgent repair or replace-
ment. The failure of both small and large diameters of water mains
could cost millions of dollars for replacement and damage mitiga-
tion resulting from the flooding and repair of average roads (Makar
et al. 2001).

The deterioration of water mains can be categorized into two
types: structural and inner surface deterioration (Kleiner and
Rajani 2001). Structural deterioration leads to the diminishing of
the ability and resilience of water mains to carry loads (Kleiner
and Rajani 2001). The deterioration of the inner surfaces of pipes
may result in the degradation of water quality, the diminishing of
the hydraulic capacity, and the reduction in the ability of the pipes
to withstand internal corrosion. Both types of deteriorations can
contribute to the failure of water distribution networks (Kleiner
and Rajani 2001).

Ductile iron, cast iron (CI), asbestos cement, and polyvinyl chlo-
ride (PVC) are among the popular materials used in pipelines. Gray
CI is commonly used as pipe material for water mains in North
America (Makar et al. 2001; Sipos 2010), covering about 50% of
the total installed water mains (Kleiner and Rajani 2001). Whereas
11% of the water mains are made of PVC in North America (Rajani
and Kleiner 2001). Kettler and Goulter (1985) found that the failure
rate of water mains made of asbestos cement and CI pipes increases
with time. A significant relation was also found between pipe diam-
eter and the number of breaks (Christodoulou 2011; Kettler and
Goulter 1985; Yamijala et al. 2009).

According to a water infrastructure report card published by
ASCE in 2017, the water systems in the US have attained an overall
grade of D. This means that the water network is operating below
standards and is, furthermore, in poor to fair condition. Over
two trillion gallons of treated drinking water is wasted owing to an
estimated 240,000 annual water main breaks (ASCE 2017). As
reported by the American Water Works Association (AWWA) in
2016, $1 trillion is needed for the maintenance of water infrastruc-
ture to meet the future demand for water (ASCE 2017). Similarly, the
Canadian Infrastructure Report Card revealed that 23% of the water
infrastructure is in poor to fair condition (CIRC 2016). As reported
by Folkman (2018), the failure rate of water mains is increasing ex-
ponentially over time with the majority of failures occurring in gray
CI pipes, whereas the lowest failure rate occurs in PVC pipes.

In Canada, the investment in pipe maintenance between 1985
and 2006 has increased from $57 billion to $125 billion, respec-
tively (Mirza 2007). Rehabilitation and replacement (R&R) of
water mains are ongoing activities owing to aging caused by opera-
tional and environmental factors, such as climate change and
temperature (Rogers and Grigg 2009).

Purpose of the Study

The physical mechanisms that lead to the failure of water mains are
complex and not fully understood. Therefore, the main objectives
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of the present study are to (1) develop prediction models for deter-
mining the average time to failure; and (2) assess the sensitivity of
the prediction model to different factors using global sensitivity
analysis (GSA).

Literature Review

There are several factors that can negatively impact the condition
of buried pipes. In structural and geotechnical studies, Kamel and
Meguid (2012) found that loss of contact between pipelines and the
surrounding soil can increase the contact pressure and, conse-
quently, stresses in the pipe material. Kaddoura and Zayed (2018)
examined the effect of erosion voids around sewer pipelines, as
such voids may reduce the service life of a pipeline. They identified
five factors that contribute the most to the occurrence of voids
around sewer pipelines: soil type, bedding type, pipeline depth,
pipeline age, and water table.

Kishawy and Gabbar (2010) concluded that the integrity
of pipelines has to meet the increasing pressure of demand on
the pipelines. They summarized the factors that could threaten
the integrity of subsurface pipelines as (1) incorrect operation,

(2) pipe material, (3) corrosion and cracking mechanics, (4) earth
forces such as earthquakes and landslides, and (5) weather-related
factors such as rough seas, high winds, and temperature. Thus,
the design of pipelines should not only rely on pressure and stress
criteria but also on other indispensable factors responsible for pipe-
line integrity.

Evaluating the factors that affect the condition of water mains is
essential for owners to meet the following criteria: (1) developing
strategies that mitigate the likelihood of pipe failure; (2) the costs
that results from pipe failure, such as flooding and traffic disrup-
tion; and (3) avoiding the early replacement of a pipe, that is, before
the end of its economic life. Deterioration of water mains can result
from static and dynamic factors that may cause long- and/or mid-
term failure of water distribution systems. Fig. 1 illustrates static,
dynamic, and operational factors that affect the failure of water
mains in both short- and long-terms. Static factors, such as pipe
material, diameter, and age, are fixed over time; whereas dynamic
factors, including environmental and operational factors such as
soil moisture, temperature, landslide, external stresses, and water
pressure, potentially change over time (Farmani et al. 2017; Kleiner
and Rajani 2001; Wang et al. 2009). In addition, there are physical
mechanisms that can lead to pipe breakage and failure, such as
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Fig. 1. Factors affecting the condition of water mains in both short- and long- terms.
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(1) internal loads resulting from operational pressure and external
loads due to traffic, soil overburden, and frost loads; and (2) struc-
tural properties of the pipe, pipe-soil interaction, and quality of
installation (Rajani and Kleiner 2001). Manufacturing flaws, exces-
sive forces, and human errors have been found to have significant
impact on the performance and service life of CI water mains
(Makar et al. 2001).

Failure Prediction Models of Water Mains

Physical, Statistical, and Machine Learning Models

Previous studies extensively implemented physical and statistical
models to examine the condition of utility pipes such as water
mains. In physical models, pipe failure was determined by meas-
uring the response under a variety of environmental or other load-
ing conditions that would negatively affect the integrity of the pipe
structure. Physical models do not require a huge amount of histori-
cal data to develop. However, they require material properties,
which are generally not readily available (Wilson et al. 2017).

Statistical models, on the other hand, embody a set of assump-
tions based on observed data that are generally obtained from many
cases that describe the pipe behavior. They can be implemented in a
case study using various levels of input data for distribution water
mains (Kleiner and Rajani 2001). As reported by Mavin (1996), the
main fragility of statistical models is that “while failures generally
increase with pipe age, there is a wide variation of individual assets”
in which “links appear with soil type and weather fluctuations.”

In recent years, machine learning has become more favorable in
the prediction of pipe failure. Algorithms can be developed to help
decision makers to identify pipes that require urgent attention or
those in need of immediate replacement (Liu and Kleiner 2014;
Zhou and Chen 2018). Machine learning could be applied to pre-
dict the failure of water mains with the growth of population and
aging of pipelines (Kettler and Goulter 1985; Zhou and Chen
2018). Data mining is defined as the process of extracting new
and useful information from big databases. Machine learning is
the technical basis of data mining that is used for finding, studying,
and describing constitutional patterns in data (Witten et al. 2016). It
is also a subset of artificial intelligence (AI) that emerged from
computer science focusing on the study of algorithms (Bishop
2006). Several articles have been published on the use of statistical

and machine learning models to predict the failure of pipelines such
as water mains. Table 1 presents a summary of some of the most
recent failure prediction models of water mains and variables that
were considered in the model. Yamijala et al. (2009) developed
statistical models that are multilinear regression, multivariate expo-
nential regression, and logistic generalized linear model (GLM)
to estimate the likelihood of pipe breaks on the basis of several
factors: pipe diameter, pipe material, pipe length, land use, temper-
ature, soil moisture, and soil type. Results showed that GLM per-
formed better than other models. In another work, Christodoulou
et al. (2011) developed possession and Cox statistical regression
models based on various factors, such as pipe age, pipe material,
incident type, pipe diameter, and number of breaks, in order to
predict the failure rate. Francis et al. (2014) built a model that con-
tained several factors (pipe material, pipe diameter, pipe age, dem-
ographic variables, and temperature) to predict pipe break by using
Bayesian belief networks (BBNs) of water mains on the basis of
historical data for a large city in the mid-Atlantic US. Shirzad et al.
(2014) suggested that support vector machine (SVM) over artificial
neural network (ANN) could be used to predict the failure rate of
water mains. Both models were developed on the basis of several
factors: (1) hydraulic pressure, (2) pipe diameter, (3) pipe length,
(4) pipe age, and (5) depth. Kabir et al. (2015) conducted a study to
predict the failure rate of water mains using Bayesian and regres-
sion models based on number of breaks, pipe age, pipe diameter,
pipe length, soil resistivity, and soil corrosivity. Results proved that
the Bayesian model performed better than the regression models
when limited data were available. Demissie et al. (2017) developed
dynamic Bayesian network (DBN) to predict pipe break on the ba-
sis of pipe length, pipe diameter, number of previous failures, type
of service connection, freezing index, thawing index, rainfall defi-
cit, and soil corrosion. Farmani et al. (2017) studied static and dy-
namic factors that impact the condition of water mains. The dataset
was divided into homogeneous groups according to the similarity
in water main features and following k-means clustering approach.
The evolutionary polynomial regression (EPR) model was then de-
veloped to predict the number of failures based on soil type, pipe
diameter, and pipe age. Kaushik et al. (2017) developed a model
using logistic regression model to predict pipe breaks using static
features such as pipe diameter, pipe length, and pipe material.
The study was applied to a real-world dataset obtained from a water
utility in Europe. Sattar et al. (2019) suggested the use of the

Table 1. Summary of failure prediction models of water mains

Reference Variables Methodology Output

Yamijala et al. (2009) Diameter, material, length, land use, soil type, soil moisture, temperature MLRM, MERM, GLM Likelihood of break
Christodoulou (2011) Age, material, incident type, diameter, number of breaks PRM Failure rate
Francis et al. (2014) Material, diameter, age, demographic variables, and temperature BBNs Pipe breaks
Shirzad et al. (2014) Hydraulic pressure, diameter, length, age, and depth ANN, SVR Failure rate
Kabir et al. (2015) # of bursts, age, diameter, length, soil resistivity, soil corrosivity BMA, RM Failure rate
Demissie et al. (2017) Length, diameter, number of previous failures, type of service connection,

freezing index, thawing index, rainfall deficit, and soil corrosion
DBN Pipe breaks

Farmani et al. (2017) Length, diameter, age, temperature, freezing index EPR Pipe breaks
Parvizsedghy et al. (2017) Age, pipe size, soil type, groundwater depth, installation quality, C-factor,

and surface type
RM Failure rate

Kaushik et al. (2017) Length, diameter, age, # of bursts, depth, material, pressure, and flow LRM Pipe breaks
Sattar et al. (2019) Length, diameter, soil type, and # of pipe failures EML Failure time
Snider and McBean (2018) Length, diameter, soil type, material, and # of pipe failures GBDTM Failure time
Winkler et al. (2018) Length, material, age, diameter, variables, and # of pipe failures BDT Failure or not

Note: MLRM = multilinear regression model; MERM= multivariate exponential regression model; GLM = generalized linear model; PRM = possession
regression model; BDT = boosted decision tree; RM = regression model; ANN = artificial neural network; BMA = Bayesian model average; EPR =
evolutionary polynomial regression; LRM = logistic regression model; EML = extreme machine learning; GBDTM = gradient-boosting decision tree
model; SVR = support vector regression; BBNs = Bayesian belief networks; and DBN = dynamic Bayesian network.
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extreme learning machine (ELM) to predict the failure of water
mains based on historical data from the Greater Toronto area.
The model was trained by using 9500 instances of failure records
based on pipe length, pipe material, pipe protection method, and
pipe diameter. Using a decision tree to predict the time of the next
water main failure, Snider and McBean (2018) developed a
gradient-boosting algorithm. The researchers trained the model on
a dataset derived from water utility for ductile iron pipes in North
America. The results suggested the use of a gradient-boosting al-
gorithm when dealing with a large dataset of pipe failure to predict
the time of the next water main failure. Winkler et al. (2018)
presented the ensemble decision tree (EDT)-based model using
historical data from Austria to predict water main failure. The
boosting technique was used to improve the model performance,
and 50% of the available data were utilized to train the model
based on various factors that are physically, geographically, and
historically derived. Some researchers have claimed that there is
a significant relationship between pipe diameter and number of
breaks (Christodoulou 2011; Kettler and Goulter 1985; Yamijala
et al. 2009).

The Motivation to the Study and Research Gaps

The failure of water mains is considered a serious problem in North
America and has been studied for the last 40 years through the ap-
plication of a variety of methods. Through the use of physical and
statistical models, extensive research has been conducted to study
the conditions and failure of water mains, respectively. However, in
recent years, machine learning has become more favorable in the
prediction of water main failure and can be implemented to assess
the future state of water mains whenever proactive maintenance is
needed. A prediction model is one of the fundamental components
that helps decision makers to determine the best maintenance plans
and to prioritize the rehabilitation actions. Computational intelli-
gence, on the other hand, promotes high-level awareness of system
conditions using historical records and sensory data. Using statis-
tical models, previous studies have focused on the failure prediction
of water mains with small or large diameters. But, as regards the
techniques of AI, such as ensemble modeling, in the prediction of
water main failure, research efforts remain limited, hence the need
for this study. Therefore, three models are developed to (1) predict
the failure of various types of materials and different sizes of water
mains; and (2) choose the best model in terms of performance.
These models are: EDT, ANN, and l2. In general, ensemble models
perform better than a single model (Drucker 1997). In previous
studies, ensemble models were applied in classification-based
models to classify whether there is failure or not, according to
Table 1, refer to Winkler et al. (2018). However, in this study
the EDT is of a regression-based model that aims to predict the
average time of water main failure, which is a continuous variable.
Whereas, l2 is developed as it performs better than a linear regres-
sion model in case of multicollinearity between predictors (Khalaf
and Shukur 2005). In other words, l2 is a form of linear regression
with a penalty term that is imposed to address multicollinearity as
well as to improve model performance. The ANN, on the other
hand, can capture nonlinear correlation between predictors and
the model output. This study is an attempt to use machine learning
to predict water main failure.

Modeling Techniques

The study mainly utilizes three main intelligent approach schemes.
These schemes are as follows: ANN, l2, and EDT.

ANN
ANNs are tools that have been widely utilized in solving many
complex real-world problems. Feedforward network is extensively
applied to recognize patterns and learn from their interactions with
the environment. The architecture of multilayer perceptron (MLP)
of feedforward neural network includes a set of artificial neurons
within the input and output layers. Intermediate layers of neurons,
on the other hand, are placed between the input and output layers.
They are called hidden layers as they contain hidden neurons and
do not interact with the external environment (Basheer and Hajmeer
2000; Jafar et al. 2010). These neurons calculate a weighted sum of
the input signals (I) and then pass it (the sum) into an activation
function, according to Eq. (1)

y ¼ f

�XI

i¼1

wixi þ α0

�
ð1Þ

where xi for i ¼ 1; 2; : : : ; I = input signal; wi = estimated param-
eter; f = activation function; and α0 = bias/intercept (Haykin 1994).

l2 Models
The main purpose of the simple linear regression analysis is to
predict the relationship between one or more continuous target
variables, given a set of input ðxiÞ. A linear combination of these
variables is built by fitting a linear relationship between target/
dependent variable (y) and predictor/independent variables ðxiÞ,
as per Eq. (2) (Tibshirani 1996). The linear combination is called
linear regression model, which is a linear function of the estimated
parameters ðwiÞ and input variables ðxiÞ. Although, some predic-
tors are linearly correlated while others are nonlinearly correlated
with the model output; linear regression remains an efficient model
that has been widely applied to predict the failure of water mains.
The least-square method can be applied to calculate the estimated
weights, as expressed in Eq. (3). The l2 is a linear regression, where
constraints (λ) are set to control the size of the weights in order to
reduce the variance between actual and predicted values, Eq. (4).
Solution are indexed by tuning the parameter (λ), where λ is chosen
for whichever coefficients are not rapidly changing and have mean-
ingful signs (Tibshirani 1996; Zou and Hastie 2005)

yðx;wÞ ¼ α0 þ
X
i¼1∶n

wixi ð2Þ

w ¼ ðxTxÞ−1xTy ð3Þ

wridge
λ ¼ ðxTxþ λIPÞ−1xTy ð4Þ

EDT-Based Model
Decision tree models are employed to predict the deterioration
of pipelines because of the simplicity of the method in creating
trees that help with decision making (Winkler et al. 2018). The en-
semble model is applied to improve the accuracy of the prediction
model and reduce the prediction error by using multiple predictors.
The two well-known techniques of ensemble learning are called
bagging and boosting. Both can be used to build a committee of
regressors that may be superior to a single regressor. Each regressor
in bagging and boosting is trained on different subsets of the train-
ing dataset, and these are randomly selected. In bagging, each re-
gressor is trained independently on samples that are randomly
picked with replacement from the original samples of the training
dataset. Different models are constructed by applying the same base
learning algorithm and then averaging the prediction of all the

© ASCE 04020044-4 J. Pipeline Syst. Eng. Pract.

 J. Pipeline Syst. Eng. Pract., 2020, 11(4): 04020044 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
cG

ill
 U

ni
ve

rs
ity

 o
n 

07
/1

7/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



regressors (Bühlmann and Hothorn 2007; Shrestha and Solomatine
2006). Whereas in boosting, the first regressor is trained on samples
that are randomly picked from the original training dataset. Then all
the training patterns pass through the first regressor to adjust the
prediction error (Drucker 1997; Elith et al. 2008).

Each function prediction is associated with a weight (αm) that is
updated during the iterative training algorithm. Eq. (5) shows the
combination of all weak predictors to obtain a strong predictor.
In boosting, that is by the AdaBoost-based technique, the weights
ðw1;w2; : : : ;wNÞ of the individual observations ðxi; yiÞ; i ¼
1; : : : ;N are initialized to wi ¼ 1=N

GðxÞ ¼ sign

�XM
m¼1

αmGmðxÞ
�

ð5Þ

These weights are reweighted after each iteration, so the prob-
ability patterns that are most in error are more likely to be fixed in
the training datasets. The patterns that are most in error are those in
which the difference between their predicted and actual values is
significant (Bühlmann and Hothorn 2007; Winkler et al. 2018).

GSA
GSAwas carried out to test the robustness of the model. This was
achieved by searching for errors in the model and observing unex-
pected relationships between the inputs and outputs. In GSA, all
inputs are varied simultaneously in comparison with local sensitiv-
ity analysis. GSA can be defined as the study of the uncertainty
in the output of a mathematical model to identify the key variables
whose uncertainty affects most the output over their entire range of
interest (Homma and Saltelli 1996; Ramakrishnan and Bailey-
Kellogg 2008; Tarantola et al. 2006).

A variance-based method is the most common one to compute
sensitivity indices for GSA (Homma and Saltelli 1996; Pianosi
et al. 2015; Song et al. 2013; Tarantola et al. 2006).

Suppose the model

Y ¼ fðX1; : : : ;XiÞ ð6Þ

where Y = output, and the inputs X1; : : : ;Xp = independent ran-
dom variables defined by probability distributions that define the
uncertain knowledge in the system. The purpose of this method is
to study the contribution of each input variable to the output vari-
ance. In other words, the importance of an input variable (Xi) on the
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Fig. 2. Proposed framework for failure prediction of water mains.
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variance of Y (Homma and Saltelli 1996; Pianosi et al. 2015; Sobol
1993, 2001). The first-order indices can be calculated using the
conditional variance, where Si < 1, as shown in Eq. (7) (Sobol
1993; Zhan et al. 2013)

Si ¼
Vi

VðYÞ ¼
VðEðYjXÞ

VðYÞ ð7Þ

Research Methodology and Model Development

Fig. 2 illustrates the framework of the proposed model that can pre-
dict average time to failure in water mains in order to assess the
condition of subsurface infrastructure and help decision makers ei-
ther in main rehabilitation or/and replacement services. The study
has developed three models including ANN, l2, and EDT in order to
select the one with satisfactory performance for failure prediction of
water mains. The developed models are evaluated employing root
mean square error (RMSE), mean absolute error (MAE), and coef-
ficient correlation (R). In addition, the developed models are tested
on data collected from Quebec City water mains.

Data Collection Method

The historical failure database used in this study is obtained from
the municipality of Sainte-Foy, Quebec. The database consists of
recorded information, such as pipe material, diameter, and length;
year of installation; and breaks. It spans a 15-year period (1987–
2001) for each individual pipe within 432 km of a water distribution
system. The database contains five types of pipe materials, namely,
gray CI, ductile iron with lining (DIL), ductile iron without lining
(DIN), PVC, and hyprescon/concrete (Hy) pipes. The majority of
breaks occurred in CI, DIN, DIL, PVC, and Hy at a rate of 47.05%,
19.41%, 18.34%, 11.18%, and 4.02%, respectively, as summarized
in Table 2. In a statistically-based model, dummy variables can be
used to represent qualitative data that take the value of either 0 or 1
(Garavaglia and Sharma 1998). Thus, each material was defined as
a dummy input and fed into the model as a vector of two possible
values, 0 or 1.

Data Preprocessing and Cross-Validation

A descriptive analysis was utilized to check themissing values of the
dataset. The database was divided up so that 90% of the total data-
base was dedicated to training and validation (cross-validation), and
10% to testing the final model. Cross-validation (k-fold) was applied
to validate and examine the performance of each selected model. It
was also applied to evaluate the parameter selection and learning
process of all the developedmodels. The database (N) was randomly
split into five subsets (the folds), N1;N2;N3; : : : ;N5, of approxi-
mately equal sizes. The model was tested and validated k times,
hence t ∈ f1; 2; : : : ; kg. The model was trained on ðN=NtÞ and va-
lidated on (Nt). The testing dataset, on the other hand, was then used
to test the performance of the final developed models. Some outliers
were removed to improve the performance of the model.

Model Development

Models were developed and coded to predict the time to water main
failure on the basis of pipe material, diameter, and length by using
MATLAB version R2018a software. The time to water main failure
is defined as the time from installation date to the 1st break.

ANN Model
ANN-MLP model was developed by using ANN Toolbox in
MATLAB R2018a software. As previously explained, MLP is a
class of feedforward neural network, and used to refer to ANN that
consists of multiple layers of perceptrons. It was applied using
backpropagation algorithm with adaptive learning rate when
searching for the best parameters for building a final model for pre-
dicting the failure of water mains. The parameter-tuning approach
was conducted for the ANN-MLP model to reach the optimal sol-
ution. Fig. 3 depicts the representation of ANN-MLP model used to
search for the optimal solution. ANN-MLP consisted of one input
and one output layer with six neurons, and one neuron, respec-
tively. The performance of ANN-MLP was also examined at differ-
ent numbers of hidden neurons in the range of [2, 20].

l2 Model
The l2 has one parameter called lambda (λ), as explained previ-
ously in Eq. (4). The model was coded to calculate the weights
of each quantitative and qualitative variables in the model. The
quantitative variables are the pipe length (L) and diameter (D),
whereas the qualitative variables are the pipe materials that were
defined as dummy variables in the model, namely, PVC, DIL,
DIN, CI, and Hy. The l2 model, on the other hand, was tested
on different values of ðλÞ in the range of [0, 2] to find the optimal
solution when validating the performance of the model. Eq. (8) de-
picts the developed equations of l2

y ¼ αo þ β1Lþ β2Dþ β3PVCþ β3DINþ β4DILþ β5CI ð8Þ
where y = predicted time to pipe failure; αo = intercept/bias;
and βk = estimated weights/coefficients.

EDT Model
Fig. 4 depicts the typical structure of bagging [Fig. 4(a)] and boost-
ing [Fig. 4(b)] ensemble learning models, which were explained
previously in EDT-based model. Drucker (1997) reported that if
boosting is not equivalent to bagging, then in most cases, it is better
than bagging. Therefore, the boosting technique was applied in the
present study to improve the prediction accuracy. EDT model using

Table 2. Summary of the failure database records from the municipality of Sainte-Foy, Quebec City

Variable

Pipe material

CI DIL DIN PVC Hy

Total number of pipes 526 205 217 125 45
Total pipe length (m) 3,734.04 15,673.96 14,657.9 9,196.245 3,371.854
Average pipe length (m) 71.0 71.50 72.23 73.57 74.93
Diameter (mm) 100–600 38–600 100–450 50–750 150–400

Fig. 3. Initial representation of ANN-MLP. b = bias; and w = weights.
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the boosting technique is a combination of two algorithms: (1) a
regression tree that creates a relationship between predictors and
response on the basis of recursive binary splits, and (2) boosting,
which is an ensemble technique used to combine simple models to
improve the accuracy of the model. Fig. 5 depicts a comprehensive
methodology of EDT model using the boosting technique. Regres-
sion trees were constructed and trained on randomly selected

samples from the training dataset. The models were then combined
to predict the failure of water mains. A modification was applied
to the Adaboost.R algorithm as suggested by (Drucker 1997;
Freund and Schapire 1996). First, a single decision tree model
was developed by tuning different hyperparameters such as maxi-
mum split and parent size to eliminate the risk of overfitting. How-
ever, the model performance was similar to the default setting.

(a)

Original 
Database

Test Sample 2

Test Sample k

Test Sample 1
Model 1

(regressor 1)

Model 2

(regressor 2)

Model k

(regressor k)

Combined 
Regressors

Final 
Prediction

Original 
Database

Test Sample 1

Test Sample k-1

Model 1

(regressor 1)

Combined 
Regressors

Test Sample 2

Model K

(regressor K)

Model 2

(regressor 2)

(b)

Final 
Prediction

Fig. 4. Typical architecture of ensemble learning models: (a) bagging-based model; and (b) boosting-based model.

Model K

(regressor K)

Model 1

(regressor 1)

Model 2

(regressor 2)Original 
Database

Training

Validation

Test

Combined Models 

Model Implementation 
and validation

Model Prediction 

End 

Model Evaluation

Fig. 5. Comprehensive methodology of EDT model using boosting technique.
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Afterward, the EDT model was developed and coded as follows
(Fig. 6):
• Assign a weight for each sample in the training dataset Zi ¼ 1

Nk
,

where Nk is the sample number of training dataset; thus, the
initial probability of each sample being in the training set
is pi ¼ Zi=

P
Zi.

• Pick Nk with replacement to form a training dataset for each
regressor (regression tree).

• Construct regression tree machines such that each machine
makes a hypothesis (hr∶x → y, where R is the number of iter-
ations/regressors).

• Train each regression tree machine R by using every Nk.
• Calculate the loss using a nonlinear function (Lossi ¼

jyi−ŷj2
maxðjyi−ŷjÞ2) and the average loss ðLoss ¼ PNk

i¼1 LipiÞ.
• Update the weight by Zi ¼ Zi × β, where β ¼ Loss

1−Loss.
• Calculate the weighted median (W) for each regression tree;

W ¼ P
I∶hr≤y logð 1βr

Þ.
• Calculate the cumulative predictions CPðxÞ¼

signðPR
r¼1WrCPrðxÞÞ.

GSA of the Developed Models
GSAwas later carried out to test which variable was more critical to
the model output. Random samples of different sizes (N) were gen-
erated to obtain the desired probability density function for xi that
covers the input space of interest. For the simplification of testing
the model, a uniform distribution was assumed for each variable in
which each outcome has the same probability that it will be the
outcome. The model was then evaluated at different levels of N
designs to test the reliability of the model. Finally, a sensitivity in-
dex ðSiÞ was computed for each xi at different N point designs by
using Eq. (10). The first-order main effect was calculated as it does

not require a significant computational cost, and higher orders are
often neglected in sensitivity analysis (SA).

Performance Assessment of the Developed Models

A set of mathematical validation equations was used to evaluate the
performance of the model. A comparison between the actual (yi)
and the predicted values ðŷÞwas accomplished as a main evaluation
procedure for assessing the performance of the model using three
techniques, namely, RMSE, MAE, and R, Eqs. (9), (10), and (11),
respectively (Botchkarev 2018; El-Abbasy et al. 2014; Sarsam
2019). R is a statistical measure that calculates the association be-
tween two variables. It is also well-known as Pearson’s correlation
coefficient. In this study, the strength of the relationship between
two variables (A and B) was calculated using R expressed in
Eq. (11) (Sarsam 2019)

RMSE ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŷ − yiÞ2

q
ð9Þ

MAE ¼ 1

n

Xn
i¼1

jŷ − yij ð10Þ

R ¼ covðA;BÞ
σAσB

ð11Þ

Pass Every Training Dataset to Each Regression Tree

Assign a weight for each sample in the training : /

Construct Regression Tree Machines; each machine makes 
hypothesis: 

Pick with replacement to form training dataset

Nonlinear Loss Function  

Calculate Average  

Iterative
P

rocess

; Weight Update: 

Weighted Median (Wm) :

Cumulative Predictions 

Fig. 6. Model development of EDT model.

Fig. 7. ANN-MLP and its performance: (a) ANN-MLP model;
(b) ANN-MLP training performance; and (c) ANN-MLP model predic-
tion performance. b = bias; and w = weights.
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Fig. 8. l2 model outputs: (a) cross-validation; and (b) prediction performance; and EDT model outputs: (c) cross-validation; and (d) prediction
performance.
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Model Implementation and Validation

Model Setup for Artificial Neural Network (ANN-MLP)

The aim of the cross-validation is to examine the performance
of ANN-MLP, using backpropagation algorithm with adaptive
learning rate when searching for the best parameters to build failure
prediction model of water mains for decision makers. ANN-MLP
trained until the validation error reached the optimal at epochs 52.
The output and input layers consisted of one neuron with a linear
activation function and six neurons, respectively. The weights are
randomly initialized in the range of [0, 1]. After tuning the param-
eters, the best ANN-MLP was constructed with one hidden layer
and five hidden neurons with tangent hyperbolic sigmoid as shown
in Fig. 7(a). The learning rate was also set at 0.38. These parameters
were chosen based on the performance evaluation of ANN-MLP in
cross-validation. Fig. 7(b) shows the performance of ANN-MLP
when the lowest mean square error (MSE) reached the minimum
value (optimal solution) at epoch 37. The final model was tested on
a test dataset and the result shows satisfactory performance in terms
of the prediction error of water main failure prediction model, using
ANN-MLP [Fig. 7(c)].

Model Setup for Ridge Regression (l2)

Cross-validation showed that the validation error reached optimal
solution at λ ¼ 0.2 [Fig. 8(a)]. Therefore, after tuning the param-
eter and performance evaluation of l2, λ was set at 0.2. The per-
formance of the final model of water main failure prediction using
l2 is shown in Fig. 8(b). Table 3 illustrates ridge coefficients of
qualitative and quantitative variables, and descriptive statistics of
quantitative variables of the l2 model. Eq. (12) shows the equation
of the developed model, using l2

y ¼ 17.6394þ 1.1428L − 3.8146D − 12.7269 PVC

− 5.0187 DINþ 4.9950 DILþ 16.8929 CI ð12Þ

Model Setup for EDT

The study utilized the parameter-tuning approach for EDT model
to reach the optimal solution. The model was trained on different
numbers of iterations/regressors R and the initial weight was as-
signed for each sample in the training (Zi ¼ 1=NK). EDT model,
on the other hand, was trained and validated on different scenarios.
Scenario 1: some outliers were removed. Scenario 2: all outliers
were removed. Scenario 3: assumed minimum time to water main
failure = 5 years. Scenario 4: assumed minimum time to water main
failure ¼ 10 years. Scenarios 3 and 4 showed the highest perfor-
mance. However, Scenario 1 was selected to train the model as,
logically speaking, pipe failure could happen at an early age be-
cause of manufacturing flaws, human errors, or any other odd/
unknown reasons. Fig. 8(c) depicts the performance of the evalu-
ation of the model at different numbers of iterations/regressors
TR. The optimal solution was achieved when TR ¼ 60. Thus, after
parameter tuning and model validation, TR was set at 60. Fig. 8(d)
illustrates the final performance of the EDT model for the failure
prediction of water mains. Additionally, different decision tree-
based models were developed and the results show that EDT
proposed in this study performed better than other investigated
methods (Table 4).

Findings and Discussion

Comparison of the Three Intelligent Models

The study employed a set of mathematical validation equations
to test the performance of each model. The evaluation matrices
showed that l2 has RMSE ¼ 5.42, MAE ¼ 4.21, and R ¼ 0.90.
However, ANN has RMSE ¼ 6.47, MAE ¼ 5.25, and R ¼ 0.84.
EDT, on the other hand, has RMSE ¼ 6.34, MAE ¼ 5.01, and R ¼
0.88 (Table 5). Results revealed that all models were able to predict
the failure of water mains. Fig. 9 illustrates the predicted values
versus actual values of time to pipe failure and shows high R
was achieved by all the models developed. Results also prove that
there is no high variation between predicted values and actual
values, and there are no outliers (Fig. 10).

Prediction Error of Different Pipe Categories

The RMSE of different pipe categories was calculated on the basis
of the pipe material. Results indicated that the prediction error of

Table 3. Ridge coefficients and model equation of l2 model

Variable
Ridge

coefficient Mean Std Ste Max

Intercept 17.6394 — — — —
L 1.1428 0.391 0.214 0.0068 1
D −3.8146 0.231 0.081 0.0026 1
PVC −12.7269 — — — —
DIL −5.0187 — — — —
DIN 4.9950 — — — —
CI 16.8929 — — — —

Note: Categorical variables: L = length; D = diameter; Std = standard
deviation; and Ste = standard error.

Table 4. Performance of different decision tree-based models based on validation error

Models Method Cross-validation No. of iterations RMSE MAE

Single decision tree Fitrtreea fivefold None 7.58 5.98
Ensemble model Fitrensemblea fivefold 50 7.31 5.69

Boosting technique
EDT model Fitrtreea fivefold 60 3.10 2.7138

Boosting technique
aApplied function in MATLAB 2018a.

Table 5. Evaluation of different models using a set of mathematical
validation equations

Models RMSE MAE R

l2 5.42 4.21 0.90
ANN 6.47 5.25 0.84
EDT 6.34 5.01 0.88
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water main pipes made of PVC was lower than that of other ma-
terials and the total average error. However, the prediction error
resulting from CI material was higher than the total average error
[Fig. 10(a)]. Thus, the results suggest that the model may perform
better when predicting the failure of each material individually. For
materials such as PVC, Hy, DIN, and DIL, the prediction error is
lower than the total average error.

GSA for EDT

EDT model was again selected for analyzing and testing the reli-
ability of the model because of its simplicity and computational
efficiency in terms of creating trees that assist decision making.
This is also the case because of the flexibility of decision tree-based

models in coping with both discrete and continuous variables.
Overall, however, all models can help decision makers to avoid
the unexpected failure of water mains in the future.

The results of the GSA showed that CI, Hy, and DIL are the
most critical variables to the output of the model (average age to
failure of individual pipe) followed by DIN and PVC [Fig. 10(b)].
Fig. 10 shows the sensitivity indices and standard error for each
material at N ¼ 50,000, N ¼ 100,000, and N ¼ 1,000,000. The
standard error for each material decreases as the size of generated
samples increases.

Different pipe geometry and material types are considered in
this study. The relationship between the pipe materials with differ-
ent pipe lengths (regardless of diameter) and the average time to
pipe failure is depicted in Fig. 11(a). Whereas, the correlation of

Fig. 9. Actual versus predicted values of water main failure prediction: (a) ANN-MLP; (b) l2; and (c) EDT.
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Fig. 10. (a) Error (RMSE) of pipe materials; and (b) sensitivity indices of pipe materials.

Fig. 11. Average time to pipe failure verses: (a) pipe length (meters); and (b) pipe diameter (millimeters).
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pipe materials with different pipe materials (regardless of length)
versus the average time to pipe failure is shown in Fig. 11(b).
Results showed that a relatively strong correlation exists between
the pipe length and the time to pipe failure (in years) for CI, DIN,
and Hy. However, the time to pipe failure (in years) is relatively
constant with the length of PVC and DIL [Fig. 11(a)]. On the other
hand, time to pipe failure (in years) has slightly changed with the
diameter of DIL, DIN, and Hy at a certain point and then remained
constant [Fig. 11(b)]. This is attributed to the fact that the majority
of pipe failure occurred in pipes with small diameters, that is, be-
tween 100 and 250 mm. Furthermore, the output is almost constant
with the diameter for other materials. It can be concluded, there-
fore, that the failure of water mains mostly relies on pipe material
and length. Similarly, previous studies showed that pipe length af-
fects the condition of the pipe (Demissie et al. 2017; Fares 2008;
Ismaeel 2016; Karimian 2015; Mohammed 2016; Sattar et al.
2019; Wang 2006). Additionally, as pointed out by Zangenehmadar
(2016), the potential of water main failure increases with the in-
crease of the pipe length. The results proved that the failure of water
mains is correlated with the pipe length. El Chanati (2014), on the
other hand, reported that the pipe length contributes to the failure of
water mains.

Conclusion

The purpose of this study was to develop intelligent models that
could assist decision makers to avoid unexpected water main fail-
ure. The developed models were trained on data collected from the
municipality of Sainte-Foy, Quebec City. The data consisted of
three physical variables that were expected to contribute to the fail-
ure of water mains with respect to pipe material, length, and diam-
eter. The results revealed that the boosting technique reduced the
prediction error of single decision tree.

Overall, all models showed good performance and were satis-
factorily able to predict the failure of water mains. However, EDT is
recommended owing to the simplicity and computational efficiency
of decision tree-based models in terms of creating trees for decision
making and coping with both discrete and continuous variables.
GSA showed that CI, Hy, and DIL are the most critical variables
to the output of the model. Besides, the results revealed that a
relatively strong correlation exists between time to pipe failure
(in years) and the length of CI, DIN, and Hy. The results also in-
dicated that the output slightly changes with the diameter for Hy,
DIN, and DIL, whereas the model output is almost constant with
the diameter for other materials. Nevertheless, some pipe materials,
such as CI, DIL, and Hy, last longer than others. It can, therefore, be
concluded that the failure of water mains mostly relies on pipe
material and length. The provided data, on the other hand, are lim-
ited and there are other variables that are crucial for identifying the
cause of water main failure. Considering especially the fact that the
failure of water mains is a dynamic process and time-dependent in
nature, dynamic/environmental variables will be considered in the
future. Finally, it is worth mentioning that the performance of pre-
diction models relies on the quality of the data collected and on the
selection of appropriate algorithmic techniques. However, the data-
base is limited and adding more variables that affect the failure of
water mains may improve the accuracy of the model.
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